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1. Introduction

The scheme to produce p at Fermilab includes an Accumulator

where antiprotons are RF stacked and coocled with the electron

cooling technique. For several conditions discussed in the design
reporg2 the beam energy in the accumulater ring is chosen to be
several hundred millions of electron volts.

Toward the end of the process, when large number of P have
been accumulated (Ngzlo"), two major effects counteract each other
in determining the final beam emittances: one 1is the e -cooling
itself which would cause the emittances. to match the e-beam
temperature, the other-is the intra-beam scattering which would
cause a decrease of the final density. Both these effects result
from the Coulomb interaction among particles of the same charge.

The e-beam cooling, though is localized in a small region where as

the intra-beam scattering is spread all around the storage ring.

If we assume that the motion of a particle looks like that of

a harmonic ocillator, we can regard a p beam as an isolated system
)

of N three-dimensional harmonic oscillators which experience many

random collisions among themselves and periodically take a "cold

electron bath", as represented schematically in Fig. 1.

The phase space volume of such a system decreases due to collision
with "cold" electrons in the cooling region. But in the rest of
the storage ring it will increase due to the interaction among
themselves. We expect an equilibrium £for the volume of the

system(p gas) will be reached over sometime characteristic of the
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Caoling region Ycold” electron bath

two processes we have described.

In following‘subsections 2-a~2-d, we discuss the behavior of

an individual particle in the emittance space and derive the
evolution equations for beam emittances. In subsection 2-e,
numerical methods to solve non-linear evolution equations are
exposed. In the final section, we will obtain the equilibrium
emittances and the relaxation times, that are the times it takes

for the P beam to reach the equilibrium, for different ring

parameters. We shall cosider only the case of an unbunched beam.

2. P Beam affected by Electron Cooling and Intra-Beam Scattering

2-a Equations of motion for an individual paticle

Taking into account both effects of collisions with "cold"

electrons and other p°s , we can write equations of motion for an

individual particle as follows:

X+ KT = 2§ +§ D, {045, —(ve),,)z-\-j% MIT’F ((%7); = ®5); )x

\3‘,‘”1. Ry(s)Y,; = % D;-e((&;);," (*e):l,"’)% IFF-(()KP);-(’“;))‘ )‘J-
§: = Z Dge ({ #3);~ %")ﬁi I55 ((%p); = Rp)))g
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with X5 = (x,¥,8)
where the index "i" refers to the i-th p, a prime meansthe orbit

‘derivative, a dot means the time derivative, K,(s) and Ky(s) are

the periodic lattice functions for horizontal and vertical
directions, Ii(s) is the periodical bending function, k and y are
the “excursions from the design orbit for horizontal and vertical
directions, s is the momentum deviation (= ap/pP ).
Dse( (%) =(%e), ) 1s the Coulomb force due to the interaction with
the k-th electron, and Ifz((%g) —(%3); ) is the Coulomb force due
to the interaction with the j-th P.

The analysis of Eqg. (2-1) taking into account both effects has
never been attempted before. It 1s possible to transform the
e-beam interaction terms in Eg. (2-1l) as equivalent to a friction
forcé%) The second terms, caused by intera-beam scatterings, have

4) :
been approximated by Piwinski in a set of equations which relate

oeam height, width and momentum spread.

Our goal is to combine the two approaches together, so we
éould ivestigate the behavior of a p beam gndér boﬁh effects.
To do so, we choose first to derive the wvariation of betatron
emittances and longitudinal emittance (the momentum deviation) of

a single particle after one pass through the cooling region.

2-b Variation of single particle emittances due to éicooling

In the linear approximation, the excursion of a test particle

from the design orbit is described by two terms

B EE(S) = Bs) + Ta()4 (2-2)
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where z tands for either % or v as we shall zlways adopt in the
following. In particular the betatron motion around the clcsed

orbit ( 7(s)-§ ) is well known to have an invariant
2

] \ 2
T, =5 (Fa)F T 205(5) P + (’:’chDPg? ) (2-3)
One obtains alsb an invariant for the longitudinal motion. In the

case of an unbunched beam, one chooses

Z
Te= & - (2-4)

In a typical electron cooling ring, the phase advance across

the cooling region is usually small, and the orbit functions of
@x,qgand<xzdo not change aépreciably. Therefore these <c¢an be
assumed as constant and will be denoted with an asterisk(*) to
show their values in that region. Also, the effect of the
friction £force which Ehe antiproton experiencés as traversing the
electron beam can be thought as lumped. The friction force

components in the laboratory frame are:

F = — 4metnl g’ (2-5)
z = — ‘ 2/ % 2 a X
mca T+ (erf +I‘2’-+"3‘Z+S/T X or + Bu/r*+x! +4 +5‘/J3)T£
F oo _A4xehl § (2-6)
s =

mEETY (o +on/r+x vy e SR oy x ey 54t

where c 1is the-velocity of light, e is the unit charge , m is the
rest mass of an electron, B and Y are the relativistic gquantities
of the electron, n is the density of the electron beam, L 1is the
Coulomb log, 8sand &y are the relative spreads of the transverse

and longitudinal velocities of the electron beam, z“(x”or y”) and
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) ars the transverse and longitudinal momenta of the antigroton.

The wvariations of the momentum components after one crossing are

ap = Fd/mype | (2-7)

AS Fs2 /Mygrc

(2-8)
where } is the length of the cooling region and M is the rest mass
of an antiproton.

Using the Egs. (2-3), (2-4) for the emittances and Egs. (2-7) ,
(2-8) , we can easily derive the variations of the betatron and
longitudinal emittances every turn. Here we assume 7*=’f;cf=0 and

5
neglect the second order terms for Apz and AS . We have

AT: = ﬁz PsPAP!

Bs 1 Py
Mrpic?

.Fz (2-9)

1}
(§+a8) -

AT

2348 . (2-10)
MYpc

IR

Moreover putting Egs. (2-5), (2-6) into Egs.(2-9),(2-10) and
averaging them over one betatron period, we obtain approximately

the representations for variations of the betatron and

longitudinal emittances

J-z e’l J-x 3- 7
2 =
- K J’ J ( 6... en jt jg. j.s - Tx 33 -J:; o

A —
Ts p’ 5‘0 T’ or -+ - 3 ﬁ;

Wlth k —_ ?Tr-rerpLTeg
T ce (Br)S




,where re and rp are the classical radius of an electron and

antiproton, Je 1s the current density of the electron beam.
Next, averaging L8Jg and AJg over all particles, we obtain

variations of beam emittances. For this purpose we need

distribution function of particles on the emittance space.

2-c Distribution on the emittance space

The distribution function on the emittance space will

obtained according to the following flow chart:

Flow Chart
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an

the

the
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P : distribution function in the real space at the cross section

?(2; sy =§ $(zp:srdp; z = 2J; 6 SinYy (2-13)

-0

T P = JZJ;/F’; oS g -

£(2.0255%) [— 9( %2, T §°)
%U'g}‘?'h f 3 (4055 ¢° )dy,

- _l_ e-—]}/(Ji)
<D

W z
S (or¢) l ]
wheve "'(Z, Pis®)= exP[—(EVZG'g 9+ P;/Zﬁ-é@))]

2TG3(s")0p,™)
(Te>= & GY/N
)= Bz (T
= <T>/6

(2-14)
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Namely the transformation into action-angle variables (J;,%@)'

leads to the distribution function

= 73/4 Jg)

!
ooRE N
3Tz, 2, ¢ ) = ——_:’.‘Iu]';) e (2-15)

From Eq. (2-15), we can write the beam distribution function on the

X
betatron emittance space Qzat the cross section @ of the torus

=3/
é(Tz;‘P) <3-> i )

In the similar way, the distribution function on the

(2-16)

longitudinal emittance space 1is obtained. We write the

distribution function EsUk ;t) as follows:

y = ! . | e-_j;/z(j;)
J51<:5) { Js

2-e Evolution equations for emittances

(2=-17)

Ss(jg; T

Let us aerage the ,variation of emittances per revolution

Eqs.(ZQll),(Z—lZ) over the distributions on the betatron and

longitudinal emittance space. We write them as follows:

-K VT ex P[— (Tef<TH+ T.,/<‘J:,> +T /243N ] d T, dJ,dJs .
AGS= §S . 2-18
TXIPETSY | o 00, % 3- e _3 % (2-18)
(ergras =T +Z)
T3m = 7, exp[ (J;/<3,>+J,/<I,>+I,/z< ) ]dLMd L ot
2 {———— - -

Devide both sides of these equations by the revolution time T4 to

obtain the differential equations

d3s> . ALJsd
dT T

d<T> . AT 0 ((T, <T, (D)
dt To

s (<Te> <Ty, <))

(2-20)
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This means that the electron cooling has been approximated as a
damping force spread uniformly around the circumference of the
ring.

Then if we use the representations for the rate of change of
the betatron and longitudinal emittances due to intra-beam
scattering, as derived by Piwinski, we know the behaviour of the

anti—proton beam through the equations

d<Tsd 7XTsd

—" = Cs (T (TTH) +2A (1 - (a,b, &P

a< s Y ( JE;@':)"'?(T))S- a,b,¢) 247
G(Iz) ’?<Ts)

= G (KT T, <IN AL £ 4,50 2¢T>

dt SALRER Jp,v:mqas ]

dd<Td _

dt” Cy (KT, Ty <T)+ A 4y (— &) 2<Tyd (2-21)
with A= CHEN/G IR (T TG £

3
o = FAT/¥I B+ TR
ﬁ .‘j<js>. . px< Tx>
199 ¥ (T + 15T

- @yﬁ; ) T = —;‘- (”o’/}")/é ( # : volume deusity)

F
scattering fuhction
: 0 TCIK
{'(tbb.d: 2$ ( Jexp['f((bs‘}"h(az(os"wf bZSJ'uIv)uSI‘M)'A) }"Cc"?)( 1-3(057‘) St M dvd /M d $ ]
200

To solve Eqs.(Z-Zl); we have to rely on the aid of a computer.

2-e Difference egquations

We can solve a set of time dependént equations by the Euler
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10
me thod. 1f <Jg),<J3) and <{Jg» are given at step n, namely
{ T, ,('J.p,, and <¢Jsd, ( {3, {Jy>, and (%>, are defined as
initial conditions), we wish to determine <{J;), (J3> and {(Js) at

step n+l. The simplest method is the Euler explicit first order

method,
(Tdpey = $Toon + Tl €T, <Tyon, <Tedn ) -4T
It = <Tdn + Fy( T, {Tpdn, ¢ D) *4T
IVt = <Tdn + Fs{ T, ¢ Ty, ¢ T ) 4T

with
qQT)
E2 XA ]
Fo= Cs($Tn Ty, <TG +2A,(1— ) $-an, b, Ca)- 2¢ T,
VB2&Te), +7<Ts),
F= G0, <Tn < T +An -5-(L - —-) 192“—- {-(a.. bu,Ca) [2<TO,,
[ 2 [ VR TN W> ]

QAu
Fo= Cy (¢T0u, <Tgdu, < T )+ An §, (— T \ 2< 7Y,

where At is the time-step.
In the Euler method, the functions F;,Fb,Fk are evaluated only at
time t,, and hence the method is explicit and first-order accurate
in the time-step At only. Investigation of the stability of the
method 1is discussed in Appendix. Each of the functions F;,F%and
F¢ includes two triple integrations, the first term corresponds to
the effect of electron cooling and the second to that of
intra-beam scattering.

The first triple integration is calculated by a numerical

method. We like to remark the following facts: the integrand has
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a steep wvariation in the range of 0 ¢ J ¢ 3{J% and we found that
as cooling proceeds, {(J> generally decreases by even more than an
order of magnitude. Consequently, the mesh into which the
emittance space (J;,J%,Js) is subdivided must be dense in the
neighbour of the ?roximity and adjustable- inside as cooling

proceeds. The mesh therefore is chosen as follows:

{J>/20 0 < J ¢ <
<J>/10 (I»< J £ 2¢<
AT =
<J»/10 243> < J £ 443>
(Tmax—4<J>) /10 44TY € T £ Tpae(=504Td)

The wvalue of the »integrand at the center of each cubic mesh is
calculated, and multiplied by the volume of the corresponding
cubic mesh. All the values so obtained are finally summed up.

The CERN Program Library "TRIINT" has been used to calculate
the tripile integrals corresponding to the intra-beam scatteting
term in Eq. (2-21). Actually a CERN vershﬁfk@ estimate intra-beam
scattering effects has been included 'in our own computer code

(10)
"EVOLU".

3. Results---Application to the Fermilab electron cooling

ring (200,400 MeV)---

One may suppose that, as é:cooling proceeds, the space charge
force as the over-all effect of Coulomb interaction with other p”s
becomes to affect on the behavior of an individual particle.

However, one must remind the following fact; although the beam



size shrinks ov cooling, the linear tune shift, which 1s regardec
as the measure of the space <charge force, does not change(See
Appendix) . Therefore, neglecting non-linear terms of the space

g)]
charge force, one can consider the intra-beam scattering to be a

dominant cause of beam blow-up.

Through the above mentioned calculation, we have assumed that
the  beam always remains the Gauss distribution. Strictly
speaking, the non-linearity in the large amplitude regions of the

friction force may brake the Gauss distribution of the D beam at

k™

the early stage of cooling. In the present study, we belive that
the differgnce from the exact Gauss distribution is a little even
at the early stage, since the initial velocity spreads of the P
beam are chosen to be smaller values than that of the e beam.

The parameters used in the present numerical célculations are

listed 1in Table 1. Most of these parameters have been chosen in

, ’ )
the design study of the Fermilab Electron Cooling Ring. But the

relative spreads of the transverse and longitudinal velocities of
the e beam, that is, ©iand &whave not been known exactly vyet.
Therefore we used the values obtained empirically from cooling
experiments which have been proceeded elsewhere so far.

In Fig.2-a~2-c, the solutions of difference evolution
- equations are shown as the function of time. As ‘expected, beam
emittances reach to an equilibrium state. And the behavior of the
emittance curves in the region, where the longitudinal emittance
has the minimum‘value; can be interpreted easily by the fact that

rapid damping of the momentum  spread enhances the intra-beam
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scattering at a streach.
The solutions of evolution equations without the intra-beam
scattering terms are shown in the same figure(Fig.2-a). We can
not find a large difference between two cases at the early stage
of e cooling corresponding to the so-called e-fold time. We
explain these results by the fact that the intra-beam scattering
is dependent only upon the beam emittances.

Furthermore, we write the time, when the system takes to

reach the equilibrium state, and its equilibrium emittances, in

the terms of Crelwand (Vg v Tfd » Tsd4iml) - S0 these values are
plotted as a fﬁﬁction of the electron beam current, in
Figs. 2-d4,2-e.

Last let us refer to the dependence of both effects, i.e.
the intra-beam scattering and e cooling, on the beam energy by
showing the numerical results for the beam energy of 400 MeV, in
Fig.2-e. The remarkable difference of ?kh,between both cases of
200 MeV and 400 MeV results from the dependence of the friction
force F; upon the beam energy: Fe =< (‘pr?ﬁ

Consequently, we conclude that the electron cooling technigue
. has the limit. Considering an allowable accumulating time and

required beam emittances under the obtained results, one may

choose the current density of the electron beam in a cooling ring.
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Table 1
Parameters of the lattice
*
Betatron amplitudes 3‘,@;= 10 m
Cooling region length l =10 m

Parameters of the electron beam

Electron current density Ja = .2--1.aA/cm?

Relative spread of e beam velocity 8, = 2."'10“.3

By= 1.%*10 T

Coulomb log. L =15

Parameters of the anti-proton beam
Number of accumulated‘E N = 1.5*10"
Beam emittances for transverse LT K= 7.%10" &
(this value 1is corresponding to rgc'beam emittance of

42 T m-mrad)

. 2 —
Momentum deviation {TsH=d = 1.*10 6

Beam energy | E = 200-400MeV
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Appendix

aA-1 Stability of the Euler Method

To 1investigate the stability of the method, it is assumed
that a small error, &, , exists at step n and we question how the

error is amplified to step n+l. To do so, the difference equation

Toer = Ju + F(T) - 4T | (A-1)

is linearized about the small error

(T + €n + T FUOO) * 35 gy €0 1 40

= 00w +FUT) ot + €n+3E{5 g € ot

2F

, so that Ewr1 = €En + 27T

-€, -al (A=2)

n
. : s g 6:9)
Here, we can define the amplification factor3 of the error

2F
3 = 1 + ;-j—. n-A'C (A=3)

The stability condition is |[g}41l. Clearly, for our evolution

egations

2F . 2 a
27 ~Ce T, =
where 7Tc is the instantaneous damping time due to electron cooling

and T, is the instantaneous rising time due to intra-beam

scattering. The stability condition is satisfied if the time-step
At is sufficiently small such that

TTe
= T.-Te

AT

(A-4)

The values of the riéht-hand side of Eg. (A-4) at the cooling stage

are summarized in Table 2.
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Table 2
o early times euilibrium state
- T ~ e oo
To=lc several seconds (o e =T

-3
In the present studies, AOC=5%*10" seconds has been <chosen, as a

reasonable value.

A-2 Linear tune shift due to space charge force of v beam

We consider the__ﬁ beam with the beam size of the diameter a
and b for horizontal and vertical, corresponding to rfd' beam.

The first order terms of the space charge potential are

described as follows;

'ltPoabTP ( 2 2 2 :.) (A-5)
, = X +
Vx4 B*r3e \ ala+h) Slasey 0

where Ip is the classical radius of an antiproton, §, is the line

density, B and ¥ are the relativistic quantities, and e is the
unit charge.

The effect of the potential Eg. (A-5) on the betatron oscillations
is equivalent to a gquadrupole magnet. Therefore it causes the
so~called linear tune shiféZ? We can derive easily this linear

tune shifts,

G
P‘,Gbrp ‘
= A-6
AV Br*e  alatb) g,, Bx(s)ds (A=6)
Fc abrp ‘ Co -
Avy B*rie b(ath) So By & (A7)

As we can assume a2>b, we know that, although the beam size

shrinks , the linear tune shifts Egs. (A-6), (A-7) do not change.
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Fig.4
Non-Adiabatic Variation of Non-Linear System (Simple Model)
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